SITE SPECIFIC NUTRIENT MANAGEMENT IN MAIZE: A REVIEW

*MEVADA, K.D.; OMBASE, K. C.; PATEL, P. D. AND SAIYAD, M. M.

DEPARTMENT OF AGRONOMY B. A. COLLEGE OF AGRICULTURE ANAND AGRICULTURAL UNIVERSITY ANAND – 388 110, GUJARAT, INDIA

*EMAIL: amt_kd@yahoo.com

ABSTRACT

Maize, being a highly nutrient responsive crop, indiscriminate and sole reliance on one or two chemical fertilizers resulted into imbalanced and inadequate nutrient supply to the crop coupled with depletion of soil. However, site specific nutrient management (SSNM) is turning to be a proven technology for higher and efficient nutrient use efficiency by virtue of right time in situ supply of balanced nutrients to the crop. In this light of background, a review of research work done in India and abroad is presented hereunder with the emphasis on impact of SSNM on growth parameters, yield attributes, yield, nutrient uptake and status in soil and economics of maize crop. It is obvious from the reviews that adoption of SSNM in integration of organic sources improves yield performance of maize besides improvement in nutrient uptake and soil nutrient status.

KEY WORDS: Farmers' Fertilizer Practice (FFP), Maize, Site specific nutrient management (SSNM)

INTRODUCTION

Maize (Zea mays L.), often referred to as "Backbone of America", "Miracle Crop", "King of Grain Crops" and "Queen of Cereals", is one of the most important cereal crops of worldwide economic importance, together with rice and wheat, provides approximately 30 per cent of the food calories to more than 4.5 billion people in 94 developing countries and the demand for maize in these countries is expected to double by 2050. In India, maize is considered as the third most important food crop among the cereals and contributes to nearly 9 per cent of the national food basket. In India, though maize is traditionally grown during the kharif season, presently cultivation of rabi maize has opened up a viable alternative where irrigation facilities are available owing to its high productivity

potential (Ferguson et al., 2002). Application of adequate quantities of nutrients is a key aspect in increasing maize productivity and production, however, balanced supply of nutrients based on the plant demand needs to be focused on knowledge intensive technologies and adoption of the same on individual farms or fields (Dobermann et al., 2003). Inappropriate method of fertilizer application, physic-chemical properties of inadequate soil. supply unavailability of fertilizer at the time of requirement, adulteration and high cost are some of the major issues related with dwindled fertilizer use efficiency (FUE) and resulted into meagre crop-fertilizer response (CFR). Large scale applications of nitrogen (N) fertilizer have also shown deleterious effects on ground water quality, especially its nitrate content, which is harmful to soil

and human health. Furthermore, gaseous losses of nitrogen as NH; and NO; resulting from nitrogen fertilization had adverse effects on the environment (Ferguson et al., 2002). In this context, Site-Specific Nutrient Management (SSNM) approach is one of such options which focus on balanced and crop need based nutrient application (Johnston et al., 2009). An effective nutrient management involves development of site specific nutrient recommendations including balanced NPK doses, timely application of fertilizer using appropriate methods, development and production of slow-release nitrogen fertilizers indigenous nitrification inhibitors and developing and practicing an integrated plant nutrient supply system (Prasad, 2009). Therefore, site-specific nutrient management (SSNM) seems to be the possible means of taping the unexploited potential of the crop.

Site specific nutrient management

The SSNM concept was first developed for irrigated rice in Asia (Dobermann el al., 2002; Witt el al., 2007 and IRRI, 2007), but the principles are generic and applicable to the other crops. It aims at improving crop performance and environmental quality by matching resource application and agronomic practices with soil and crop requirements as they vary in space and time (Pierce and Nowak, 1999). The plant's need for fertilizer nitrogen, phosphorus or potassium is determined from the gap between the crop demand for sufficient nutrient to achieve a yield target and the supply of the nutrient from indigenous sources, including soil, crop residues. manures and irrigation water (Sharma, 2011).

Agricultural production being an interactive effect of soil-water-fertilizer-climate continuum, a wise scientific management of this complex system is crucial for enhancing crop productivity on a

sustained basis without any detrimental effect to the environmental ecology. Among the various inputs, the mineral nutrition of plants is considered as the key input in making maximum contribution to the crop productivity (Streeter and Barter, 1985). About 55 per cent of increase in food grain production during the last two decades has come through increased fertilizer use. However, the total annual removal of plant nutrient by the crops and cropping systems being much higher than the amount added through the fertilizers, has resulted in a negative nutrient balance (Yadav al..1998). This gap between nutrient removal and their replenishment, imbalanced use of NPK fertilizers and emerging deficiency of secondary as well as micronutrients have led to a decline in crop productivity as well as deleterious effect on soil productivity and health (Swamp, 2002). The law of maximum plant yield (Wallace, 2000) stated that limiting factors interact in a sequentially additive manner so that when they are corrected progressively, more response is obtained from the use of each input. Nitrogen fertilizer requirements depend on many factors, including yield goal, inorganic soil nitrogen, potential nitrogen mineralization and soil type (Schlegel and Havlin, 1995). Climate, soil and management factors cause crop response to nitrogen and the optimal nitrogen rate to vary, both spatially within and between fields and from year to year (Mamo et al., 2003; Scharf et al., 2005 and Schmidt et al., 2007). The SSNM strategy for nitrogen includes the determination of the total fertilizer nitrogen requirement of a maize crop for a given yield target and the distribution of nitrogen applications into 2-3 splits to coincide with plant demand at critical growth stages. The SSNM approach advocates the sufficient use of fertilizer phosphorus and potassium to overcome deficiencies. while simultaneously

accounting to some extent for the nutrient removal with harvested products. Thus, site specific management of soil fertility inputs is an attractive and intuitive approach for increasing fertilizer use efficiency (Ferguson *et al.*, 2002) to promote better plant growth to achieve higher yield (Raun *et al.*, 2002) by narrowing down the gap between average grain production and potential production (Lan *et al.* 2008).

Murni et al. (2010) reported that a substantial yield gap of about 1 to 2 Mg/ha between farmers' actual yield and what is attainable with optimal crop and nutrient management and SSNM provides substantial opportunities for farmers to increase productivity and profitability of maize through improved nitrogen use efficiency with more appropriate fertilizer nitrogen rates and better timing of nitrogen application practiced in the **SSNM** treatments. Compared with traditional local management practices, SSNM demonstrated 7, 30 and 12 per cent increase in yield, REN and net returns, respectively (Pathak and Ladha, 2011).

Effect on growth parameters of maize

The plant height is an important growth character directly linked with the productive potential of crop. An optimum plant height is claimed to be positively correlated with the productivity of crop (Saeed et al., 2001). Plant height is an important crop growth as well as yield component and it has a direct proportionality to 100 grain mass (Saidaiah et al., 2008). Plant height is positively correlated with grain yield, the higher the plant height, better the crop yield (Tenaw, 2000).

Kumar *et al.* (2002b) reported significantly higher plant height with combined application of 100% RDF (120-60 N-P kg/ha) + 10 t/ha FYM. However, Pathak *et al.* (2002) observed maximum plant height, leaf area index, dry matter

accumulation, net assimilation rate and crop growth rate by applying 75% N-P-K through fertilizer + 25% N through FYM (100% RDF 100-50-25 kg N-P-K/ha). Similar trend for plant height, dry matter accumulation and leaf area index in maize was reported by Louraduraj (2006) with combined application of 100% RDF (135-62.5-50 kg N-P-K/ha) with 5.0 t/ha vermicompost. Khadtare et al. (2006) recorded significant values in respect of cob girth, cob length and green cob weight in treatment RDF (150-50-00 kg N-P-K /ha) followed by 75 % RDN + 25 % N through vermicompost prepared (VC) Parthenium hysterophorous L. And 75 % RDN + 25 % N through VC prepared from Amaranthus spinosus L.. Shinde et al. (2011) found significantly higher plant height and dry matter accumulation with application of 75% N-P-K through fertilizer + 25% N through FYM (100% RDF 120-60-60 kg N-P-K/ha) as compared to 50% RDF (60-30-30 kg N-P-K/ha), while at MPUAT, Udaipur, Tetarwal et al. (2011) recorded significantly higher plant height and dry matter accumulation at harvest with application of 100% RDF (40-15 kg N-P/ha) + 10 t/ha FYM. Verma et al. (2012) noted significantly higher plant height, leaf area index and number of days to maturity and silking with 100 kg N/ha along with 7.5 t FYM/ha. The results are in close proximity to those reported by Jadhav et al. (2012), Shilpashree et al. (2012), Joshi et al. (2013), Kannan et al. (2013), Shinde et al. (2014) and Maske et al. (2015). An application of 25% RDF (30-15-15 kg N-P-K/ha) + biofertilizers (Azotobacter + PSB) + green manuring with sunnhemp + compost resulted in significantly taller plants and maximum total plant drv matter accumulation (Kalhapure et al., 2013), whereas significantly the highest plant height and number of leaves per plant was observed under application of 75 % N from

urea + 25 % N from poultry manure which was at par with 100 % N from urea (Iqbal *et al.*, 2014).

Mashego (2013) reported that sitespecific nitrogen management (SSNM) and conventional approaches recorded the plant height of 1.06 and 1.07 m, respectively, were significantly higher than control (0.89 m). According to Ogbomo and Ogbomo (2009), maize plants were the tallest (168.35 cm) that received 600 kg NPK/ha than that of its lower rate. Adekayode and Ogunkoya (2010) also reported that the highest plant height (197.6 cm) was observed in plot with 300 kg NPK/ha and the lowest (167.9 cm) in plot without fertilizer. Higher fertilizer levels (NPK 15:15:15) increased the plant height of maize (Obidiebube et al., 2012). This result agreed with earlier study, which stated that maize production can be increased with higher levels of fertilizer application especially NPK (FAO, 2004). Asghar et al. (2010) also found that plant height increased linearly with NPK application. Among different treatments, application of 250-110-85 kg NPK/ha gave the maximum plant height (198.55 cm) against the minimum (143.60 cm) recorded in control. Similar results were reported by Magsood et al. (2001), Ayub et al. (2002), Sharar et al. (2003) and Ekwere et al. (2013). Also, the maximum plant height (216.5 cm) was observed with full dose of nitrogen (250 kg/ha), while the minimum plant height (184.5 cm) was recorded with no fertilizer (Rehman et al., 2010). Increase plant height with increasing in nitrogen rate was also observed by Khan et al. (1999), Magsood et al. (2000) and Mashego (2013).

Effect on yield attributes of maize

Significantly higher yield attributes *viz.*, cobs/plot (136), cob length (19.1 cm), cob girth (14.2 cm), grain rows/cob (13.29), grains/row (31.87), cob yield (5.50 t/ha), shelling per cent (85.22) and harvest index (38.12) and grain yield (4.62 t/ha) were

recorded by SSNM over absolute control and 50% RDF, however, it remained at par with 100% RDF (Kumar et al., 2014). Singh et al. (2012) found that yield attributes increased with increasing nitrogen up to 150 kg/ha, while Vishram et al.(2006) recorded enhancement in yield attributes such as cob cob girth, grain weight per cob, length, shelling percent, test weight as well as grain and stover yield with 180 kg nitrogen/ha applied through chemical fertilizers. The increase in cob length of maize was associated with fertilizer application as the maximum ear length (17.37 cm) was obtained with full dose of nitrogen (250 kg/ha), while maize without fertilizer produced the minimum cob length (10.39 cm) (Rehman et al., 20 1 0). The results are in confirmatory with Santalla et al. (1994), Adekayode and Ogunkoya (2010) and Obidiebube et al. (2012). Sahu (2006) reported maximum number of cobs in treatment receiving inorganic fertilizers (150-60-60 kg N-P-K/ha) along with FYM @ 1.1 t/ha + poultry manure @ 1.1 t/ha + vermicompost @ 1.1 t/ha to rabi maize, nevertheless, combined application of 50 or 75% RDF with FYM @ 12 t/ha or vermicompost @ 2.7 t/ha significantly increased the cobs per plant, cob length, cob girth and test weight of maize compared with the application of either only inorganic fertilizer or organic sources (Nanjappa et al.,2001). Similarly, significantly higher grains per cob and test weight were recorded with application of 100% RDF (120-60 N-P kg/ha) + 10 t/ha FYM by Kumar et al. (2002a). On the other hand, Pathaket al. (2002) revealed maximum cobs per plant, cob length, cob girth and test weight of maize with 75% N through RDF (100% RDF 100-50-25 kg N-P-K/ha) + 25% N through FYM.

ISSN: 2277-9663

Muthukumar *et al.* (2005) reported that application of nitrogen in split doses had significant influence on the yield

parameters viz., cob length, cob girth and Similarly, Kalpana cob weight. and Krishnarajan (2002)reported that application of 150 kg K/ha in three split doses resulted in the highest cobs per plant (3.63), cob length (18.33 cm), cob width (3.16 cm), whereas Asghar et al. (2010) found that the number of cobs per plant was not significantly affected by different NPK rates. Among the NPK levels, treatment with (250-110-85) NPK recorded maximum number of cobs per plant (1.51). Nonsignificant effects of fertilizer application on cobs per plant had also been reported by Magsood et al. (2001) and Sharar et al. (2003).However, these results contradictory to findings of Khan et al. (1999), as they found significant effect of NP applications on number of cobs per plant.

The number of grain rows per cob under site-specific management approach was statistically at par with that of conventional management approach (Mashego, 2013). Similarly, the maximum number of grain rows per cob (15.30) was produced with NPK application at the rate of 250-110-85kg/ha, which was higher than other rates of fertilizer (Asghar et al., 2010). These results are in agreement with those of Ali et al. (2002) and Younas et al. (2002), who reported that number of grain rows per cob was increased with the increase in application of fertilizers.

Khuong and Tan (2006) reported that SSNM treatment produced 471 kernels /ear in dry season and 416 kernels /ear in wet season at Veitnam. The maximum number of grains (692.0) per ear was recorded with application of full dose of nitrogen (250 kg/ha), while the minimum number of grains (386.0) per ear was observed with no fertilizer (Rehman *et al.*, 2010). These results are in contrary with the findings of Raja and Reddy (1990), who reported that nitrogen fertilizer did not

affect the number of grains per cob. The maximum ear weight (256.9 g), number of grains per ear (570) and grain yield (1661.7 kg/ha) were recorded significantly higher with 300 kg/ha nitrogen application (Adekayode Ogunkoya, and Similarly, application of 250-110-85 kg NPK/ha gave more grain weight/cob (104.99 g) followed by 175-80-60 kg NPK/ha (101.53g), and 100-50-35 kg NPK/ha (95.63g) and control (90.00g) (Asghar et al., 2010). The results are supported by Hussain et al. (1999), who reported that grain weight per cob increased with increasing levels of NPK fertilizers.

ISSN: 2277-9663

The 100 grain mass is positively correlated with grain yield (Alvi et al., 2003; Bocanski et al., 2009). Site-specific nitrogen management recorded significantly higher 100 grain mass than the control and conventional management approach (Mashego, 2013). Application of NPK (15:15:15) to maize plants produced significantly higher 100 seed weight than the untreated plants as the highest 100 seed weight (11.62 g) was observed with 400 kg/ha nitrogen fertilizer (Ogborno and Ogbomo, 2009). This result agreed with earlier study which stated that maize production could be increased with higher levels of fertilizer application especially NPK (Jennifer, 1996; Kang, 2004).

Effect on yield

The fertilizer requirement for a field or location is estimated from the expected yield response to each fertilizer nutrient, which is the difference between the attainable yield and the nutrient-limited yield. Nutrient-limited yields are determined from nutrient omission trials in farmers' fields, while attainable yield is the yield using best management practices without nutrient limitation. The amount of nutrients taken up by a crop is directly related to its yield. The attainable yield indicates the total nutrient requirement and the nutrient-limited

yield is the yield supported only by the indigenous supply of the concerned nutrient without any external application (Dobermann *et al.*, 2003).

Jat al. (2013)observed etsignificantly higher yield of maize under site specific nutrient management (SSNM) as compared to state recommendations at most of the locations (Delhi, Bajaura, Udhampur, Dhoti, Ludhiana, Pantnagar, Banswara and Ranchi). Similarly, Meena et al., (2014) reported that SSNM improved productivity and micronutrients realization on maize crop in Udaipur which led to 962.40, 50.52 and 55.02, and also 17.95, 17.35 and 17.59 per cent higher stover and biological yields over control and state recommendation of nutrients, respectively. Sreelatha et al. (2012) also observed the highest yield of rice and maize as well as system productivity with SSNM. Ferguson et al. (2002) reported that application of nutrient as per SSNM (200:120:100 N:P:K) resulted in higher maize yield (9.85 t/ha grain yield in dry season and 8.58 t/ha grain yield during the wet season, which was superior over farmer practice (FFP) fertilizer treatment (180:91:71 N:P: K). It was further reported that yield reduction of 10 to 15 per cent was observed in plots without phosphorus or potassium, while 80 per cent yield reduction without nitrogen. in plot Significant effect of SSNM on maize grain yield was also observed in trials conducted at Kanpur (Kumar et al., 2006). Murni et al. (2010) observed that SSNM generated a yield gain of 1.5 Mg/ha (19%) over current farmer fertilizer practice (FFP) improved timing of nitrogen application. They further reported that grain yield in omission plots was in the order of PK (5.9 Mg/ha) < NP (7.8 Mg/ha) < NK (7.9 Mg/ha), which showed that nitrogen was the most limiting nutrient affecting maize yield, whereas phosphorus and potassium supply

were equally limiting factors. Biradar *et al.*, (2012) also reported that SSNM led to yield enhancement (7.02 t/ha) of 17.4 per cent and 28.6 per cent over recommended dose of fertilizers (RDF) and farmers fertilizer practice (5.44 t/ha), respectively. Increase in yield by 8 to 19 per cent with SSNM was also reported by Meena *et al.* (2014).

ISSN: 2277-9663

Pasuquin et al. (2010) conducted an experiment at 19 locations of Indonesia, Philippines, and Vietnam with hybrid maize and reported that SSNM improved yield by about 0.9 to 1.3 Mg/ha and 53 per cent increase in agronomic efficiency of nitrogen fertilizer as compared to the farmers' fertilizer practice (FFP). Similarly, Witt et al. (2010) also conducted an experiment at 19 locations with hybrid maize in Indonesia, Philippines and Vietnam and reported that SSNM improved yield by 0.8 to 1.2 Mg/ha compared with the farmers' fertilizer practice (FFP), but the full yield advantage of 1.5 to 1.7 Mg/ha with SSNM could often only be achieved once other constraints to yield improvement were addressed. Based on two-year study, Lan et al. (2008) found that SSNM approach had 11 and 33 per cent more maize yield than conventional management approach, while the amount of fertilizer was reduced by 32 and 29 per cent, which indicated that variable rate application or site-specific application approach is more feasible for maize cultivation to produce optimum yields with minimum fertilizers.

Optimum maize vield using lower nitrogen rate can be achieved through sitespecific nitrogen management than the conventional nitrogen management approach (Paz et al., 1997). Site-specific nitrogen management resulted in the highest grain yield of 5.2 t/ha than conventional nitrogen management approach (4.0 t/ha) and control (3.2 t/ha). Which, besides improvement in 1.2 t/ha in required 63 per cent lesser nitrogen than conventional nitrogen management approach (Mashego, 2013). The grain yields were significantly affected by NPK fertilizer application as the lowest grain yield (3.52 t/ha) obtained from plants without fertilizer treatment, while the highest grain yield (7.95 t/ha) was obtained at 400 kg/ha fertilizer (NPK-15:15:15) (Ogbomo and Ogbomo, 2009). Akmal *et al.* (2010) also reported that application of 150 kg/ha nitrogen application yielded the highest grain yield (4827 kg/ha) followed by 120 kg nitrogen application (3962 kg/ha). These findings are in lined with the view of Adediran and Banjoko (2003).

Madhavi et al. (1995) stated that the grain and stover yield of maize were significantly increased by increasing level of NPK fertilizer from 0 to 100 per cent of the recommended NPK fertilizer (120:60:60 NPK kg/ha), while Bundi and Andraski (2001) pointed out that application fertilizer even at a higher rate (150:26:32 NPK kg/ha) significantly increased the grain and stover yield. Ashoka et al., (2008) observed that the application of RDF $(150:75:40 \text{ kg } N:P_2O_5:K_2O/ha) + 25 \text{ kg}$ ZnS0₄/ha + 10 kg FeS0₄/ha recorded significantly higher yield and green fodder yield. The maximum grain yield (6.717 t/ha) was obtained in plot with full dose of nitrogen, while the minimum (2.697 t/ha) was observed in plot without fertilizer (Rehman et al., 2010). Experiments carried out at different locations revealed that maximum grain and straw yield of maize were found higher with application of 100% RDF (135-62.5-50 kg N-P-K/ha) along with vermicompost @ 5 t/ha (Louraduraj, 2006); 75 % RDN + 25 % N through VC prepared from Parthenium hysterophorous L. and 75 % RDN + 25 % N through VC prepared from Amaranthus spinosus L. (Khadtare et al.,2006); 75% RDF (100% RDF 120-60-60 kg N-P-K/ha) + 5 t/ha biocompost (Tripathi et al., 2007); 120 kg N/ha + 1.5 t VC/ha (Meena et al., 2007); FYM @ 10t/ha or

vermicompost @ 2.5 t/ha with 100% RDF (150-75-37.5 kg N-P-K/ha) (Channabasavanna et al., 2008); 100% RDF (40-15 kg N-P/ha) + 10 t/ha FYM (Tetarwal)et al., 2011);100 kg nitrogen/ha along with 7.5 t FYM/ha (Verma et al., 2012); and 100% RDF (120-60-30 kg N-P-K/ha) + FYM @ 10 t/ha (Joshi et al., 2013). Similar trend was reported by Shinde et al. (2014), Pandey and Avasthi (2014) and Maske et al. (2015). The improvement in grain yield was probably due to more number of rows per ear, number of grains per row and 1000 grain weight, etc. The results are in line with the findings of Jayakumar et al. (2008).

ISSN: 2277-9663

Significantly higher shelling percentage was recorded by CMH 08-292 and the lowest yield attributes and grain yield were recorded by HQPM-1(Kumar *et al.*, 2014). Giunta *et al.* (2009) and Kolo *et al.* (2012) confirmed the similar findings in maize.

Nutrient uptake and nutrient status of soil

Pawar and Patil (2007) suggested that application of vermicompost @ 5 t/ha along with 100% RDF (120-60-40 kg NPK/ha) recorded maximum uptake of NPK and Ca, Mg, S, Zn, Mn, Cu and Fe over other treatments. The available amount of N, P, K and S in soil after harvest of maize crop was 249.42, 41.47, 460.22 and 17.61 kg/ha in the same treatment, respectively. Kumar et al. (2002a) observed significant improvement in NPK uptake by hybrid maize as well as available NP and organic carbon in soil with application of 100% RDF (120-60-40 kg N-P-K/ha) + 10 t/ha FYM. Likewise, significant improvement in available N, P and K status of the soil was observed by Jamwal (2006) with application of 50 % RDF (60-40-20 NPK kg/ha) along with 50% FYM. Meena et al. (2007) also reiterated improved nutrient content and uptake compared with 120 kg N/ha + 1.5 t vermicompost/ha. Though Tripathi et al.

(2007) recorded higher available organic carbon and N in soil after crop harvest with 75% N and P through fertilizer (100% RDF 120-60-60 kg N-P-K/ha) + 5 t/ha biocompost. Singh and Nepalia (2009) reported similar outcomes with 100% RDF (90-40 kg N-P/ha) +5 t/ha vermicompost. On the other hand, 100% RDF (40-15-00 kg N-P-K/ha) + 10 t/ha FYM registered maximum NPK uptake by maize and available N and P status to the tune of 1.28 and 14.89 per cent, respectively over initial status of soil fertility (Tetarwal et al., 2011). The results are in close proximity to that of reported by Singh et al. (2012). Significantly higher values of organic carbon, available N, P₂O₅ and K₂O content in soil were recorded with application of 25% RDF (30-15-15 kg N-P-K/ha) + biofertilizers (Azotobacter + PSB) + green manuring with sunnhemp + compost (Kalhapure et al. 2013), whereas Pandey and Avasthi (2014) found highest total porosity, CEC, organic carbon, available N, P2O5 and Zn in soil with the application of RDF (120-60-40 kg N-P-K/ha) + FYM 10 t/ha.

site-specific The nitrogen approach required management lesser amount nitrogen fertilizer than the conventional nitrogen management approach by 63, 63, 69 and 43 per cent at different sites viz., Towoomba, Leeukraal, Radium and Ga-Marishane respectively (Mashego, 2013). Pasuquin et al. (2010) observed that average agronomic efficiency of nitrogen (AEN) under SSNM was raised up to 25.1 kg grain kg / N. An increase of 53% compared to the farmers' fertilizer practice (FFP) might be due to better timing and splitting of fertilizer K applications during the season. They further reported that nitrogen content and uptake in grain and straw was significantly higher with SSNM over absolute control and remained at par with 100% RDF. Almost similar findings were also obtained by Prakongkep (2010) Gilkes and who showed that adoption of SSNM in maize increased the agronomic efficiency of N fertilizer by 53 per cent as compared to the FFP. Amongst genotypes, significantly higher nitrogen content and uptake by grain and straw was obtained by CMH 08-292, however, it remained at par with PMH-1 (Kumar *et al.*, 2014).

ISSN: 2277-9663

Economics

SSNM a set of nutrient is principles management which when combined with efficient crop management practices will help farmers to attain high yield and profitability. The field evaluation trial conducted all around the country also showed that the location-specific nutrient recommendations increased yield and economic benefits of wheat farmers as compared existing practices. the to Pampolino et al. (2012) found that adoption of Nutrient Expert for Hybrid Maize (NEHM) increased profits of farmers in Indonesia and Philippine by 270 and 379 US\$/ha, respectively over farmer's fertilizer practice (FFP). Meena et al. (2014) reported that adoption of SSNM on maize crop led to 65.17 per cent higher returns over control. Site specific nutrient management improved income by 455 to 520 Yuan Chinese currency (RMB)/ha. Attanandana et al. (2006) reported that the investment was higher with lower yield for the farmers who use site-specific not nutrient management technique. The site specific nutrient application (SSNM) led additional net income of 2219 ₹/ha over RDF and 4057 ₹/ha over FFP (Biradar et al., 2012). Added net benefits of 140 US\$ /ha/crop in Indonesia, 103 US\$ /ha/crop in Philippine and 218 US\$/ha/crop in Vietnam were also obtained under site specific nutrient application (SSNM) as compared to the farmers' practice in hybrid maize (Pasuguin et al., 2010).

Based on 120 on-farm experiments with hybrid maize during 2004-2008 in

Indonesia, Philippines and Vietnam, Gilkes Prakongkep (2010) reported that and adoption of SSNM added net benefit of 184 US\$/ha/crop, which was attributed to increased yield rather than reduced costs of inputs. The application of 120:90:0 N:P:K kg/ha turned out to be the cheapest alternative in terms of total costs, while in terms of net benefits, 120:90:90 N:P:K kg/ha was marginally higher than that of 120:90:0 NPK kg/ha (Chaudhary et al., 2002). Ashoka et al. (2008) reported that the significantly higher gross returns of 96,838 ₹/ha, net return of 76,889 ₹/ha and B:C ratio of 3.85 was noticed in RDF + 25 kg ZnS0₄. Ferguson et al. (2002) obtained a of 833,000 VND (Vietnamese profit dong)/ha in dry season and 786,000 VND/ha during the wet season at Vietnam with higher NPK rate of SSNM. Koch et al. (2004) found that variable-rate nitrogen application was more economically feasible than conventional uniform nitrogen Johnston et al. (2009) found application. that SSNM approach implemented by the improved field specific **IPNI** that recommendation to a farmer, in a cost effective and timely fashion.

Shanwad et al. (2010) fetched significantly higher gross returns (69,059 ₹ /ha) and net returns (51,659 ₹/ha) with 100% RDF (100-50-25 kg N-P-K/ha) + 7.5 t/ha FYM over only chemical fertilizer (100-50-25 N-P-K/ha). treatment kg However, Tetarwal et al. (2011) obtained maximum net returns (13741 ₹/ha) and benefit: cost ratio (0.93) with 100% RDF (40-15-00 kg N-PK/ha) + 10 t/ha FYM over control in kharif maize. Kalhapure et al. (2013) concluded that application of 25% (30-15-15 kg N-P-K/ha) **RDF** biofertilizers (Azotobacter + PSB) + green manuring with sunnhemp + compost recorded significantly the highest gross return (95.9×10^3) \rightleftharpoons /ha), net return (54.2×10^3) $10^3 \ge \text{/ha}$) and B: C ratio (1.30), which were 212.38, 537.6 and 242.1 per cent more than that of control treatment, respectively.

ISSN: 2277-9663

CONCLUSION

In the light of above discussion, it can be concluded that for highly nutrient demanding crop like maize, balanced and real time management as well as integration of nutrients through site specific nutrient management resulted into higher return in yield and income besides improved nutrient use efficiency, curtailing chemical load in the soil without compromising on yield front.

REFERENCES

- Adediran, J. A. and Banjoko, V. A. (2003). Comparative effectiveness of some compost fertilizer formulations for maize in Nigeria. *Nigerian J. Soil Sci.*, **13**: 42-48.
- Adekayode, F. O. and Ogunkoya, M. O. (2010). Effect of quantity and placement distance of inorganic 15: 15: 15 fertilizer in improving soil fertility status and the performance and yield of maize in a tropical rain forest zone of Nigeria. *J. Soil Sci. Environ. Manag.*, **1**(7): 155-163.
- Akmal, M.; Rehman, H.; Farhatuallah; Asim, M. and Akbar, H. (2010). Response of maize varieties to nitrogen application for leaf area profile, crop growth and yield components. *Pakistan J. Bot.*, **42**(3): 1941-1947.
- Ali, T.; Rakht, T.; Shafi, M.; Khan, S. and Shah, W. A. (2002). Uptake of nitrogen as affected by various combinations of nitrogen and phosphorus. *Asian J. Pl. Sci.*, **1:** 367-369.
- Alvi, M. B. M.; Rafique, M.; Tarique, S.; Hussain, A.; Mahmood, T. and Sarwar, M. (2003). Character association and path coefficient analysis of grain yield and yield

- ISSN: 2277-9663
 - components maize (Zea mays L.). Pakistan J. Biol. Sci., 6(2): 136-138.
- Asghar, A.; Ali, A.; Syed, W. H.; Asif, M.; Khaliq, T. And Abid, A. A. (2010). Growth and yield of maize (Zea mays L.) cultivars affected by NPK application in different proportion. Pakistan J. Sci., **62**(4): 211-216.
- Ashoka, P.; Mudalagiriyappa; Pujari, B. T.; Hugar, P. S and Desai, B. K. (2008). Effect of micronutrients with or without organic manures on yield of baby com (Zea mays L.). Karnataka J. Agril. Sci., 21(4): 485-487.
- Attanandana, T.; Suwannarat, C.; Vearasilp, T.; Kongton, S.; Boonsompoppan, B.; Meesawat, R.; Boonampol, P.; K.; Tipanuka, Soitong, C.; Chareonsaksiri, A.; Verapattananirund, P. and Yost, R. S. (2006). Site-Specific Nutrient Management for farmers of small farms of the tropics. Paper presented at 14th World Fertilizer Congress, Lotus Pang Suan Kaew Hotel. Chiang Mai, Thailand, 22-27 January, 2006.
- Ayub, M.; Nadeem, M. A.; Sharar, M. S. And Mahmood, N. (2002). Response of maize (Zea mays L.) fodder to different levels of nitrogen and phosphorus. Asian J. Pl. Sci., 1: 352-354.
- Biradar, D. P.; Aladakatti, Y. R. and Basavanneppa, M. A. (2012).Enhancing the productivity and economic returns of field crops with balanced nutrient application through site specific nutrient management approach. Proceedings pf Agro-Informatics and Precision Agriculture, August, 1-3, Hyderabad, Inida, pp. 146-151.
- Bocanski, J.; Sreckov, Z. and Nastasic, A. (2009). Genetic and phenotypic relationship between grain yield and

- components of grain yield of maize (Zea mays L.). Genetika, 41(2): 145-
- Bundi, L. G and Andraski, T. W. (2001). Staiier fertilizer response on high and very high testing soils. Better-Crops-With-Plant-Food, 85(2): 3-5.
- Channabasavanna, A. S.; Nagappa, K. and Shivkumar. (2008).Effect integrated nutrient management in residual maize and effect succeeding chickpea under irrigated condition. J. Maharastra Agril. *Univ.*, **33**(1): 1-3.
- Chaudhary, R. S.; Rana, K. S and Kantwa S. R. (2002). Effect of cropping system and nitrogen on growth and yield of maize (Zea mays L.). Annls. Agril. Res., 23(3): 461-464.
- Dobermann, A.; Arkebauer, T.; Cassman, K. G.; Drijber, R. A.; Lindquist, J. L.; Specht, J. E. and Walters, D. T. (2003). Changes in nitrogen use efficiency and soil quality after five years of managing for high yield corn and soybean. In: Murphy, L.S. (Ed.), Fluid Focus: The Third Decade. Proceeding of the third decade of the 2004 Fluid Forum, Fluid Fertilizer Foundation, Manhattan, K.S., 21: 73-79.
- Dobermann, A.; Witt, C.; Dawe, D.; Abdulrachman, S.; Gines, H. C.; Nagarajan, R.; Satawatananont, S.; Son, T. T.; Tan, C. S.; Wang, G. H.; Chien, N. V.; Thoa, V. T. K.; C. Phung. V.; Stalin. Muthukrishnan, P.; Ravi, V.; Babu, M.; Chatuporn, S.; Sookthongsa, J.; Sun, Q.; Fu, R.; Simbahan, G. C.; Adviento, M. A. A. (2002). Sitespecific nutrient management for intensive rice cropping systems in Asia. Field Crops Res., 74: 37-66.
- Ekwere, O. J.; Mouneke, C. O.; Eka, M. J. And Osodeke, V. E. (2013). Growth

- and yield parameters of maize and egusi melon in intercrop influenced the cropping system and different rates of NPK fertilizer. J. Agril. Crop Res., 1(5): 69-75.
- **FAO** (2004).**FAOSTAT** (http://faostat.fao.org/).
- Ferguson, R. B.; Hergert, G. W.; Schepers, J. S.; Gotway, C. A.; Cahoon, J. E. and Peterson, T. A. (2002). Sitespecific nitrogen management of irrigated maize: Yield and soil residual nitrate effect. Soil Sci. Soc. *America J.*, **66**: 544-552.
- Gilkes, R. J. and Prakongkep, N. (2010). A site-specific nutrient new management approach for maize in the favourable tropical environments of Southeast Asia. Paper presented at Symposium on "Soil Solutions for a Changing World". 19th World Congress of Soil Science. Brisbane, Australia, 1-6 August, pp. 4-7.
- Giunta, F.; Prunddu, G. and Motzu, R. (2009). Radiation interception and biomass and nitrogen. Field Crop Res.. 110: 76-84.
- Hussain, I.; Mahmood, T.; Ullah, A. and Ali, A. (1999). Effect of nitrogen and sulphur on growth, yield and quality of hybrid maize (Zea mays L.). Pakistan J. Biol. Sci., 2(3): 637-
- Iqbal, A.; Iqbal, M. A.; Raza, A.; Akbar, N.; Abbas, R. N. and Khan, H. Z. Integrated nitrogen management studies in forage maize. Am-Euras. J. Agril. Environ. Sci., **14**(8): 744-747.
- IRRI. Site-specific (2007).nutrient management [online]. Available at www.irri.org/irrc/ssnm (last update 2007; accessed 05 Dec. 2007).
- Jadhav, K. L.; Bhilare, R. L. and Kunjir, N. T. (2012). Influence of integrated nutrient management on growth and

- yield of maize. J. Agril. Res. *Technol.*, **37**(2): 344-346.
- Jamwal, J. S. (2006). Effect of integrated nutrient management in maize (Zea mays) on succeeding winter crops under rain fed conditions. Indian J. *Agron.*, **51**(1): 14-16.
- Jat, M. L.; Satyanarayana, T.; Majumdar, K.; Parihar, C. M.; Jat, S. I.; Tetarwal, J. P.; Jat, R. K. and Saharawat, Y. S. (2013). Fertilizers best management practices for maize systems. Indian J. Ferti., 9(4): 80-94.
- Jayakumar, K.; Jaleel, C. A. and Azooz, M. (2008).Minerals constituents variations under cobalt treatment in vigna mungo (L.). Global J. Mol. Sci., **3**(1): 32-34
- Jennifer, G. K. (1996). Morphology and Growth of Maize, UTA Research Training Programme, Guide. International Institute of Tropical Agriculture (UTA), Strategy for production in sustainable maize west and central Africa. In: Badu al.. Apraku, В. et(Eds.). Proceedings of a Regional Maize Work April, 21-25, Cotononu, Benin Republic, pp. 263-273.
- Johnston, A. M.; Khurana, H. S.; Majumdar, K. and Satyanarayana, T. (2009). Site specific nutrient management -Concept, current research and future challanges in Indian agriculture. J. Indian Soc. Soil Sci., 57(1): 1-10.
- Joshi, E.; Nepalia, V.; Verma, A. and Singh, D. (2013). Effect of integrated nutrient management on growth, productivity and economics of maize (Zea mays). Indian J. Agron., 58(3): 434-436.
- Kalhapure, A. H.; Shete, B. T. and Dhonde, M. B. (2013). Integrated nutrient management in maize (Zea mays L.) increasing production with

- ISSN: 2277-9663
 - sustainability. Int. J. Agric. Food Sci. Technol., 4(3): 195-206.
- Kalpana, R. and Krishnarajan, J. (2002). Effect of dose and time of potassium application on yield and quality of baby corn. Agril. Sci. Digest, 22(1): 59-60.
- Kang, B. T. (2004). Nutrients Requirements and Fertilizer Use for maize. In: Agronomy Training Manual for Agriculture Agronomists, NAFPPI IITA, Fed Dept. Agric. Lagos, pp. 405-416.
- Kannan, R. L.; Dhivya, M.; Abinaya, D.; Lekshmi, R. K. and Kumar, S. K. (2013). Effect of integrated nutrient management on soil fertility and productivity in maize. Bull. Environ. Pharmaco. Life Sci., 2(8): 61-67.
- Khadtare, S. V.; Patel, M. V.; Jadhav, J. D. and Mokashi, D. D. (2006). Effect of vermicompost on yield and economics of sweet corn. J. Soil Crops, 16(2): 401-406.
- Khan, M. A.; Khan, N. U.; Ahmad, K.; Baloch, M. S. and Sadiq, M. (1999). Yield of maize hybrid-3335 as affected by NP levels. Pakistan J. Biol. Sci., 2: 857-859.
- Khuong, T. Q. And Tan, P. S. (2006). Study on the technology package for high yielding and safety rice that follow organic or partly organic rice production at Tien giang Province. Paper presented at Fair of high quality agricultural Products of Ministry of Science and Technology, Ho Chi Minh City, 2006.
- Koch, B.; Khosla, R.; Frasier, W. M.; Westfall, D. G. and Inman, D. (2004). Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron. J., 96: 1572-1580.
- Kolo, E.; Takim, F. O. and Fadayomi, O. (2012). Influence of planting date

- and weed management practice on weed emergence, growth and yield of maize (Zea mays L.) in Southern Guinea Savanna of Nigeria. *J. Agril. Biodiver. Res.*, **1**(3): 33-42.
- Kumar, V.; Singh, A. K.; Jat, S. L.; Parihar, C. M.; Pooniya, V.; Sharma, S. and Singh, B. (2014). Influence of site specific nutrient management on growth and yield of maize (Zea mays) under conservation tillage. Indian J. Agron., 59(4): 657-660.
- Kumar, A.; Gupta, B. R. and Pathak, R. K. (2006). Effect of site specific nutrient management on yield and quality composition of maize. Indian J. Agril. Biochem., 19: 63-66.
- Kumar, A.; Thakur, K. S. and Munuja, S. (2002a). Effect of fertility levels on promising hybrid maize (Zea mays) under rainfed conditions of Himachal Pradesh. Indian J. Agron., 47(4): 526-530.
- Kumar, M.; Singh, M. and Ahmed, P. (2002b). Effect of different level of nitrogen and phosphorus on growth and yield of maize in Nagaland. Extended 1. Summaries, International Agronomy Congress held at New Delhi, November 26-30, 2002, pp. 202-203.
- Lan, Y.; Zhang, S.; Li, W.; Hoffmann, W. C. and Ma, C. (2008). Variable rate fertilization for maize and its effects based on the site-specific soil fertility and yield. Agril. Engg. Int. : CIGR J., Manuscript IT 08 002, 10: 1-10.
- Louraduraj, A. C. (2006). Identification of optimum quantity of vermicompost for maize under different levels of fertilization. J. Ecobiol., 18: 23-27.
- Madhavi, B. L.; Reddy, M. S. and Rao, P. C. (1995).Integrated nutrient management using manure and

- fertilizer for maize. *J. Res.*, **23**(3-4):1-4.
- Mamo, M.; Malzer, G. L.; Mulla, D. J.; Huggins, D. R. And Strock, J. (2003). Spatial and temporal variation in economically optimum nitrogen rate for corn. *Agron. J.*, **95**: 958-964.
- Maqsood, M.; Ali, R.; Nawaz, N. and Yousaf, N. (2000). The effect of NPK applications in different proportions on the growth and yield of spring maize. *Pakistan J. Biol. Sci.*, **3**(2): 356-357.
- Maqsood, M.; Abid, A. M.; Iqbal, A. and Hussain, M. I. (2001). Effect of variable rate of nitrogen and phosphorus on growth and yield of maize (Golden). *J. Biol. Sci.*, **1**(1): 19-20.
- Mashego, S. (2013). Maize grain yield under conventional and site-specific nutrient management in a dry land fanning system: Agronomic implications, M.Sc. (Agri.) Thesis (Unpublished) Submitted to University of Limpopo.
- Maske, N. M.; Pawar, S. B.; Munde, G. R. and Patange, M. J. (2015). Integrated nutrient management and irrigation schedules on growth and yield of *rabi* maize. *Bioinfolet*, **12**(3): 622-623.
- Meena, R. R.; Purohit, H. S.; Khatik, M. L and Sumeriya, H. K. (2014. Productivity of maize (*Zea mays* L.) as influenced by site specific nutrient management. Annls. *Agril. Biol. Res.*, **9**(1): 38-44.
- Meena, O.; Khafi, H. R.; Shekh, M. A.; Mehta, Asha, C. and Davda, B. K. (2007). Effect of vermicompost and nitrogen on content, uptake and yield of *rabi* maize. *Crop Res.*, 33(1-3): 53-54.

- Murni, A. M.; Pasuquin, J. M.; and Witt, C. (2010). Site specific nutrient management for maize on ultisols lampung. *J. Trop. Soils*, **15**(1): 49-54.
- Muthukumar, V. B.; Velayudham, K. and Thavaprakash, N. (2005). Effect of plant growth regulators and time of nitrogen application on quality and green cob yield of baby corn (*Zea mays L.*). *Madras Agril. J.*, **92**(7-9): 545-548.
- Nanjappa, H. V.; Ramachandrappa, B. K. and Mallikarjuna, B. O. (2001). Effect of integrated nutrient management on yield and nutrient balance in maize (*Zea mays*). *Indian J. Agron.*, **46**(4): 698-701.
- Obidiebube, E. A.; Achebe, U. A.; Akparobi, S. O. and Kator, P. E. (2012). Effect of different levels of NPK (15:15:15) on the growth and yield of maize in rainforest agroecological *zone*. *Int. J. Agril. Sci.*, **2**(12): 1103-1106.
- Ogbomo, K. E. L. and Ogbomo, J.E. L. (2009). The performance of *Zea mays* as influenced by NPK fertilizer application, *Notulae Soientia Biologicae*, **1**(1): 59-62.
- Pampolino, M. F.; Witt, C.; Pasuquin, J. M.; Johnston, A. and Fisher, M. J. (2012). Development approach and evaluation of the nutrient expert software for nutrient management in cereal crops. *Comput. Electro. Agric.*, **88**: 103-110.
- Pandey, K. K. and Awasthi, A. (2014). Integrated nutrient management in the maize (*Zea mays* L.) yield and soil properties. *Int. J. Agril. Sci.*, **10**(1): 244-246.
- Pasuquin, J. M.; Witt, C. and Pampolino, M. (2010). A new site specific nutrient management approach for maize in the favourable tropical

- environments of Southeast Asia. Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a changing world, Brisbane, Australia, August, 1-6, Division Symposium 3.2 Nutrient best management practices; pp. 4-7.
- Pathak, H. and Ladha, J. K. (2011). Options improving nitrogen efficiency. In: Resource Conserving Techniques in Crop Production. Scientific Publishers, New Delhi.
- Pathak, S. K.; Singh, S. B. and Singh, S. N. (2002). Effect of integrated nutrient management on growth, yield and economic in maize (Zea mays) wheat (Triticum aestivum) cropping system. Indian J. Agron., 47(3): 325-332.
- Pawar, R. B. and Patil, C. V. (2007). Effect of vermicompost and fertilizer level on soil properties, yield and uptake nutrients maize. by of Maharashtra Agril. Univ., 32(1): 11-14.
- Paz, J. O.; Batchelor, W. D. and Colvin, T. S. (1997). Calibration of a crop growth model to predict spatial yield variability. ASAE paper No. 97-American 1031. Soc. Engineers, St. Joseph, MI, USA.
- Pierce, F. J. and Nowak, P. (1999). Aspects precision Agriculture. of Agron., 67: 1-85.
- Prasad, R. (2009). Efficient fertilizer use: The key to food security and better environment. J. Trop. Agric., 47(1-2): 1-17.
- Raja, V. And Reddy, S. R. V. (1990). Response of maize (Zea mays L.) to intercropping mulch. water absorbing polymer and limited irrigations. Indian J. Agron., **35**(1&2): 102-105.

Raun, W. R.; Solie, J. B.; Johnson, G. V.; Stone, M. L.; Mullen, R. W.; Freeman, K. W.; Thomason, W. E. and Lukina, E. V. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J., **94**: 815-820.

- Rehman, H. U.; Ali, A.; Waseem, M.; Tanveer, A.; Tahir, M.; Nadeem, M. A. and Zamir, M. S. I. (2010). Impact of nitrogen application of growth and yield of maize (Zea mays L.) grown alone and in combination with cowpea (Vigna unguiculata L.). Am-Euras. J. Agric. Environ. Sci., 7: 43-47.
- Saeed, I. M.; Abbasi, R. and Kazim, M. (2001). Response of maize (Zea mays) to nitrogen and phosphorus fertilization under agro-climatic condition of Rawalokol, Azad Jammu and Kaslim and Kashmir. Pakistan J. Biol. Sci., 4: 949-952.
- Sahu, B. (2006). Yield and economics of intercropping legumes in maize (Zea mays) under rainfed conditions. *Indian J. Agril. Sci.*, **76**(9):554-556.
- Saidaiah, H.; Satyanarayana, E. and Kumar, S. S. (2008). Association and path coefficient analysis in maize (Zea mays L.). Agril. Sci. Digest, 28: 79-83.
- Santalla, M.; Ron, A. M.; Escribano, M. R. and Deron, A. M. (1994). Effect of intercropping bush bean populations with maize on agronomic traits and their implications for selections. Field Crops Res., 36: 185-189.
- Scharf, P. C.; Kitchen, N. R.; Sudduth, K. A.; Davis, J. G.; Hubbard, V. C. and Lory, J. A. (2005). Field-scale variability optimal in nitrogen fertilizer rate for corn. Agron. J., 97: 452-461.

- Schlegel, A. J. and Havlin, J. L. (1995). Corn response to long term nitrogen and phosphorus fertilization. *J. Prod. Agric.*, **8**: 181-185.
- Schmidt, J. P.; Hong, N.; Dellinger, A.; Beegle, D. B.; and Lin, H. (2007). Hillslope variability in corn response to nitrogen linked to in-season soil moisture redistribution. *Agron. J.*, **99**: 229-237.
- Shanwad, U. K.; Aravindkumar, B. N.; Hulihalli, U. K.; Surwenshi, A.; Reddy, M. and Jalageri, B. R. (2010). Integrated nutrient management (INM) in maize-bengal gram cropping system in Northern Karnataka. *Res. J. Agril. Sci.*, **1**(3): 252-254.
- Sharar, M. S.; Ayub, M.; Nadeem, M. A. and Ahmad, N. (2003). Effect of different rates of nitrogen and phosphorus on growth and grain yield of *maize*. *Asian Pl. Sci.*, **2**(3): 347-349.
- Sharma, S. K. (2011). Site specific nutrient management for sustained higher productivity of rice-wheat cropping system. In: Resource Conserving Techniques in crop production published by Scientific Publishers, New Delhi. pp. 230-242.
- Shilpashree, V. M.; Chidanandappa, H. M.; Jayaprakash, R. and Punitha, B. C. (2012). Influence of integrated nutrient management practices on productivity of maize crop. *Indian J. Fundam. Appl. Life Sci.*, **2**(1): 45-50.
- Shinde, P. D.; Jadhav, A. S. and Shaikh, A. A. (2011). Effect of integrated nutrient management and row spacing on growth and yield of composite maize (*Zea mays L.*). *Int. J. Sci. Res.*, **4**(2): 65-70.
- Shinde, S. A.; Patange, M. J. and Dhage, S. J. (2014). Influence of irrigation schedules and integrated nutrient

- management on growth, yield and quality of *rabi* maize (*Zea mays* L.). *Int. J. Curr. Microbiol. Appl. Sci.*, **3**(12): 828-832.
- Singh, D. and Nepalia, V. (2009). Influence of integrated nutrient management on quality protein maize (*Zea mays*) productivity and soils of southern Rajasthan. *Indian J. Agril. Sci.*, **79**(12): 1020-1022.
- Singh, G.; Sharma, G. L.; Golada, S. and Choudhary, R. (2012). Effect of integrated nutrient management on quality protein maize (*Zea mays* L.). *Crop Res.*, **44**(1 & 2): 26-29.
- Sreelatha, D.; Sivalakshrni, Y.; Anuradha, M. and Rangareddy, R. (2012). Productivity and profitability of rice maize cropping system as influenced by site specific nutrient management. *Maize J.*, **1**(1): 58-60.
- Streeter, J. G. and Barter, A. L. (1985).

 Nitrogen and minerals. In:
 Physiological Basis for Crop Growth
 and Development. (E.). M. B. Tesar.
 Madison, Wisconsin, *American*Society of Agronomy. pp. 175-200.
- Swamp, A. (2002). Lessons from long term fertilizer experiments in improving fertilizer use efficiency and crop yields. *Ferti. News*, **47**(12): 59-73.
- Tenaw, W. (2000). Effects of nitrogen fertilizer rates and plant density on grain yield of maize. *African Crop Sci. J.*, **8**(3): 273-282.
- Tetarwal, J. P.; Ram, B. and Meena, D. S. (2011). Effect of integrated nutrient management on productivity, profitability, nutrient uptake and soil fertility in rainfed maize (*Zea mays*). *Indian J. Agron.*, **56**(4): 373-376.
- Tripathi, S.; Joshi, H. C. and Singh, J. P. (2007). Response of wheat (*Triticum aestivum*) and maize (*Zea mays*) to biocompost prepared from distillery

- effluent and pressmud. Indian J. Agril. Sci., 77(4): 208-211.
- Verma, N. K.; Pandey, B. K. and Singh, U. P. (2012). Effect of sowing dates in relation to integrated nitrogen management on growth, yield and quality of rabi maize (Zea mays L.). J. Anim. Pl. Sci., 22(2): 324-329.
- Vishram, R.; Singh, R. N and Singh, K. (2006). Studies on integrated use of FYM, nitrogen and sulphur on growth, yield attributes and yield on winter maize (Zea mays L.). Crop *Arch.*, **6**(2): 749-752.
- Wallace, A. (2000). Some factors in prevention and correction of iron deficiencies in plants. International Symposium on Iron Nutrition and Interaction in Plants. Houston, Texas, May 14-19, 2000, USA. p.
- Witt, C.; Pasuquin, J. M. and Dobermann, A. (2010). Site Specific Nutrient Management Maize for Favourable Tropical Environments of Asia. Proceedings of the 19th

- World Congress of Soil Science: Soil Solutions for a changing world, Brisbane, Australia, August, 1-6.
- Witt, C.; Buresh, R. J.; Peng, S.; Balasubramanian, V.; Dobermann, A. (2007). Nutrient Management. In: Fairhurst, T. H.; Witt, C.; Buresh, R. J. and Dobermann, A. (Eds.). Rice: A Practical Guide to Nutrient anagement. 2nd edition. International Institute (IRRI), Rice Research Philippines, International Plant Nutrition Institute (IPNI) and International Potash Institute (IPI), Singapore, pp. 1-45.
- Yadav, R. L.; Yadav, D. S.; Singh, R. M. And Kumar, A. (1998). Long term effect of inorganic fertilizer input on crop productivity in rice-wheat cropping system. Nutrient Cycling *Agroecosystem,* **51**: 193-200.
- Younas, M. H.; Rahman, H. and Hayder, G. (2002). Magnitude of variability for yield and yield associated traits in maize hybrids. Asian J. Pl. Sci., 1(6): 694-696.

[MS received : December 22, 2017] [MS accepted: January 07, 2018]